| 1. | Optimal error estimation on semi - discrete solution of parabolic equation 抛物型方程半离散解的最优误差估计 |
| 2. | A g / l - s finite element discrete form is proposed . the discrete solution is stable for any combination of finite element spaces 并建立了方程的g / l - s有限元离散格式,相应地证明了有限元离散解的存在唯一性。 |
| 3. | These may be single solutions or reagents formed in situ by combining the components of the reagents present in two discrete solutions 这些卡尔费休氏标准试剂可能是单一的溶液或试剂,它是就地通过合并存在于两种不相混溶的溶剂的试剂成分而得到。 |
| 4. | We first show that the solution operator s ( t ) is lipschitz continuous , then prove the discrete solution operator s _ ( * ) = 5 ( t _ ( * ) ) satisfy the squeezing property , finally , we get the existence of the exponential attractor m . whose fractal dimensionality is finite 第四章,研究ginzburg - landau方程在三维空间的指数吸引子的存在性。首先证明解算子s ( t )是lipschitz连续的,然后证明离散解算子s _ * = s ( t _ * )满足挤压性,从而得到指数吸引子m的存在性。 |
| 5. | The three kinds of construction graph can be applied to optimization problems with different characteristics , and the two kinds of layered construction graph are more suitable for complex multi - stage dynamic decision problems ( cmsddp ) than scg . the clcg defines smaller solution building blocks and is able to perform better in large - scale cmsddps than the blcg . 2 . the construction graph of aco algorithms need statically describe the whole solution space ( or discrete solution spa ( 2 )蚁群优化算法的解构造图一般要静态地描述整个解空间(或者是离散化了的解空间) ,对于大规划动态决策问题,不仅存在描述解空间的困难,而且让蚁群在迭代过程中始终在整个解空间中进行搜索,搜索性能会很低。 |
| 6. | In chapter two , we consider full disceret scheme of mixed finite element methods for the following initial - value problems of linear integro - differential equations of parabolic in this chapter , we give the error analysis of this full discrete scheme and get optimal error estimates for the discrete solutions of u and p 第二章讨论下述线性抛物型积分微分方程初边值问题混合有限元方法的后差全离散格式。给出了该全离散格式的误差分析,得到了离散解逼近未知函数u以及伴随速度p的关于空间和时间的最优阶误差估计。 |